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ABSTRACT 

We discuss the spectrum of the minimal operator corresponding to a constant 
coefficient partial differential operator on L p (En) .  We then study effects on the 
spectrum by various perturbations. 

1. Introduction. Let P(D) be a constant coefficient partial differential operator 
in E". Acting on the set C~ ° of smooth functions with compact supports, P(D) is 
closable in LP(E"), 1 < p < oo. In this paper we are concerned with certain spectral 
properties of its closure Po in Lt'(E"). 

For p = 2, a(Po) consists of the closure of the set of values taken on by P(¢) 
for ~ real. We were able to obtain the same result for 1 < p < oo under the assump- 
tions 

(1.1) P(~)(¢)/P(¢) = 0([¢1 -alul) as 141-, ~o 

(1.2) 1/P(¢) = o(I ¢ I -b) as [ ¢ I ~ ~ ,  

real, for b > (1 - a)l, 21 > n, where P(~)(~) denotes a derivative of P(~) of order 

I 1. 
We then obtain sufficient conditions on an operator Q(D) to imply that 

D(Po) ~ D(Qo) and on a function q(x) that D(Po) ~ D(qQo ) and that qQo be 
Po-compact. This enables us to study the essential spectrum of an operator of 
the form 

L(x,O)= ~ aj(x)Qi(D ). 
It 

Most previous work on these questions concerned elliptic operators. A partial 
list of contributors includes Balslev [1], Browder [2], Birman [3], Glazman 
[4], Kate [5], Rejto [6], Stummel [8], Wolf [9], and Schechter [10]. See also 
the book [11] by Glazman and the authors quoted there. 

Results for non-elliptic operators were obtained by Niznik [19] and Marti- 
rosjan [7]. 

2. The Main Results. Let P(~) be a polynomial of degree m in the variables 
¢ = (41, "", ~,). I f  we replace ~ by D = (D 1, ..-, D~), where 
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Dj = - iO/Oxj, 1 < j <= n, 

we obtain a constant coefficient partial differential operator P(D). Let p satisfy 
1 __< p < oo. The minimal operator Po in L p = LP(E ") corresponding to P(D) is 
defined as follows. A function u E L p is in D(Po) and Pou = f i f  there is a sequence 
{Uk} of functions in Co~(the set of infinitely differentiable functions with compact 
supports) such that Uk-o U and P(D)Uk-of  in L p. Concerning the spectrum a(Po) 

of Po we have 

THEOREM 2.1. In order that 2 be in P(Po) it is necessary, and for  p = 2 also 
sufficient, that P ( ~ ) -  2 be bounded away f rom zero for  ~ real. 

REMARK 2.2. In general the non-vanishing of P ( ~ ) - 2  for real ~ does not 
imply that it is bounded away from zero. For instance, if 

P(~) = ( ~ 2 -  1) 2 + ~ + "'" + ~,2, 

then P(¢) # 0 for all real vectors ~. But if we take ~2 = 1/~1 and ~j = 0 f o r j  > 2, 
then P(~) ~ 0 as I~1 I ~ oo. 

R~MARK 2.3. By Theorem 2.1 we have for p = 2 that a(Po) consists of those 2 
such that there is a sequence {~(k)} of real vectors satisfying p(~(k)) -o 2 as k -o oo. 

In order to describe our results for p # 2, we let # = (/a x, ...,/t,) be a multi- 
index of non-negative integers. Set ]#l = #~ + "'" +/a,  and 

We assume that 

(2.1) 

and 

(2.2) 

p~u)(~)/p(~) =O([~]-al,,I) as lll-o ~ ,  each/~, 

1/P(¢) = O(l e l - b )  as 14[ -o oo 

for real vectors 4, where a > 0 and b > 0. We have 

THEOREM 2.4. Let l be an integer > n/2 and assume that P(O satisfies (2.1) 

and (2.2) for  b > (1 - a)l. I f  1 < p < 0% then 2 ep(Po) if and only if P(~) ~ 2 
for  all real vectors 4. 

REMARK 2.5. Many types of operators satisfy (2.1) and (2.2). I f  a > 0, P(O is 

hypo-elliptic. If  a = 1, P(~) is elliptic. We always have a < 1 and b > ma. 

REMARK 2.6. One can define a maximal  operator Pp corresponding to P(D) in 

L p. We say that a function u e L  p is in D(Pp) and Pp u = f  if 

(2.3) (u,/~(O)~b) = (f, ~), ~b ~ C~ °, 

where P(O is the polynomial the coefficients of which are the complex conjugates 



386 M. SCHECHTER Israel J. Math., 

of those of P(~). It has been proved by Goldstein [12] that Pp=Po for 1 < p < oo. 
Hence all of the statements made so far apply to Pp as well. 

Next let q(x) be a function defined on En, and let Vbe the set of those functions 
u ~ L p such that qu ~ L p. We can consider multiplication by q as an operator on 
L p with domain V. This operator is dosed; denote it also by q. We shall give 
sufficient conditions for D(Po) ~ D(q) and for q to be Po-compact. For arbitrary 
operators A, B we say that B is A-compact if  D(A) ~_ D(B) and 

(2.4) Ilxkl[ + [I axk[I ~ C, x~D(A), 

implies that {BXk} has a convergent subsequence. 

THEOREM 2.7. Suppose P(~) satisfies (2.1) and (2 .2 ) fo r  real ~, with 
b > (1 - a)n + a. Let k o denote the smallest integer > 0 such that a k o > n - b. 
Assume that 1 < p < Go and that q(x) is a function locally in LP such that 

M~p(q) < oo for some ~ satisfying 

(2.5) - n  < ~ < p(n - k o ) - n ,  

where 

(2.6) M~,p(q) = supy Ix-~<l I q(x)[ ~l x - y[~dx. 

Assume also that P(Po) is not empty. Then D(Po)~_ D(q). 

THEOREM 2.8. I f  the hypotheses of Theorem 2.7 are satisfied and 

(2.7) Ix-~<llq(x)lPdx-~0 as ly[--*oo, 

then q is Po-compact. 

RB~RK 2.9. For an arbitrary operator A on a Banach space, there are at 
least seven definitions for the essential spectrum tre(A ) of A (cf. 1"13, 14]). Most of 
them coincide for a self-adjoint operator in Hilbert space. For these one has 

(2.8) ~e(A +/3)  = ~e(A) 

whenever B is A-compact. Thus under the hypotheses of Theorem 2.8 we have 

(2.9) ae(P o + q) = ae(Po). 

Moreover, under every definition of essential spectrum one has 

(2.10) ~,(Po) = a(Po). 
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Hence 

(2.11) a(P o + q) _ tre(Po + q) = tr(eo). 

Let P(~) and Q(~) be polynomials and let Po and Qo be the minimal operators 
corresponding to P(D) and Q(D), respectively. We give conditions under which 

one has D(eo) ~ D(Qo). 

THEOREM 2.10. A necessary, and for p = 2 also sufficient, condition that 

D(eo) ~_ D(Qo) is that 

(2.12) [Q(OI < c ( [P(O[  + 1), ~ real. 

When p # 2 we have a weaker result. 

THEOREM 2.11. Suppose that P(~) satisfies (2.1) and that 

(2.13) Q(~)/P(~) = 0(] ~ I -e) as 141-  ~ ,  ¢ real. 

Assume that c > (1 - a)l, where 1 is an integer > n/2. I f  1 < p < oo and P(Po) 
is not empty, then D(Po) ~ D(Qo). 

The next two theorems are concerned with the operator q Qo. 

THEOREM 2.12. Suppose 1 < p <  ~ and that (2.1) and (2.13) hold with 
c > (1 - a)n + a. Assume that q is locally in L p and that M~,p(q) < co for some o~ 

satisfying 

(2.14) - n < ~ < p(n - ko) - n, 

where k o is the smallest integer > 0 satisfying k o a > n -  c. I f  P(Po) is not 
empty, then D(Po) c_ D(q Qo). 

THEOREM 2.13. If(2.7)  holds in addition to the hypotheses of Theorem 2.12, 
then the operator q Qo is Po-compact. 

Every variable coefficient partial differential operator is of the form 

(2.15) L(x, D) = ~ aj(x)Qj(O), 
j=l  

where the Qj(D) are constant coefficient operators and the aj(x) are functions of 
coordinates. We can define the minimal operator L o corresponding to L(x,D) 
in the same way as was done for constant coefficient operators. 

TrmOR~M 2.14. Assume that there are constants aj such that the constant 
coefficient operator P(D) = ~,aj Qj(D) satisfies (2.1) and 

(2.16) Qj(¢)/P(¢) = 0(] ¢]-ej) as I¢1 
for each j ,  where cj > (1 - a)n + a. Suppose 1 < p < oo and 



388 

(2.17) 

where 

(2.18) 
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- n < ~ j  < p ( n  - k j )  - n 

and kj  is the smallest integer > 0 satisfying akj  < n - ej. If P(Po) is not empty 

and 

(2.19) ix_fyt < t 
l a j ( x ) - a j l P d x ~ O  as lyl-~oo, 

l < j < r ,  

we have by (3.1) 

P(D)dPk ~ 0 as k -~ do 

in L p . This shows that 0 • a(Po). 

then Lo - Po is Po-compact. Thus 

a(Lo) ~ a¢(Lo) = ae(Po)= a(Po) 

for  those definitions of essential spectrum discussed in Remark  2.9. 

3. Proofs. 
Proof of Theorem 2.1. Without loss of generality, we may assume that 

2 = 0. If  P(O is not bounded away from zero, there is a sequence {~k)} of real 
vectors such that p(~(k)) _.~ 0 as k ~ oo. Let {ek} be a sequence of positive numbers 
such that 

(3.1) ekIMP(#)(~ tk)) --~ 0 as k -~ 

holds for each p, and let f be a function in C~ ° such that [1 f 11 = 1 (the norm is 
that of LP). Set 

(3.2) ~bk(x ) = e~/p eieC~)Xf(ekx), k = 1, 2, . . . ,  

where 1 /~  is to be interpreted as 0. Thus 

(3.3) II tkkll = 1, k = 1,2 , . . . .  

Now by Leibnitz's formula (cf. [15]) 

P(D)~ k = e,~/t' e i¢~ ~ E sk I u IpltJ)(y(k))fu(e, kX)/~ [, 
# 

where fu(x)  = DUff(x) = ( - 1)lulOlulf(x)/Oxl u' ' ' '  OXn u" and #! = / h i  "'" P~!. Since 

II f (  x)II -- I1 II, 
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Next suppose that there is a constant Co> 0 such that 

(3.4) IP(¢)l > Co, ~ real. 

Let S be the set of infinitely differentiable functions v on E" such that 

IxlJlo"v(x)l 
is bounded for each j and IX. If  f e  S, then its Fourier transform Ff  is also in S. 
By (3.4) the same is true of Ff/P.  Thus there is a u ~ S satisfying 

(3.5) Fu = F f / e .  

(3.6) P(D)u = f 

Thus 

In particular 

(3.7) (u, P(D)~) = (f,  ~), c~ e C~, 

showing that u ~ D(Po). By Goldstein's result [12], we have u E D(Po). Moreover, 
by (3.4) and (3.5) 

I Fu I <= 1vfl/Co, 
which implies 

II fu  11---llFflll<o. 
I f  p = 2, Parseval's identity then gives 

(3.8) II u 11 --< llfll/co. 
Since S is dense in LPand Po is a closed operator, this shows that for each f ~ L  p 
there is a unique u ~D(Po) such that Pou = f  and (3.8) holds. Thus OEp(Po) 
and the proof of Theorem 2.1 is complete. 

Before proving Theorem 1.4, let me give the 

Proof of Theorem 2.11. Assume 0 ~ P(Po). I am going to prove 

(3.9) II e(o)vll ~ clle(o)~[l, ~ s .  

Since C~ = S, it follows from (3.9) that D(Po) ~_ D(Qo). To prove (3.9) note that 

Q(~) F ~ . D  . -, F[Q(D)v] = ~ I_rt )vJ. 

Inequality (3.9) will follow if we can show that Q(O/P(O is a multiplier in L p for 
for 1 < p < oo. Now I claim that 

(3.10) Q(.,(¢)/P(¢) =o(1¢1 -o~.~-o) as I¢1->oo. 
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Assume this for the moment. An easy induction shows that D~'(Q/P) is a sum 
of  terms of  the form 

constant Q("(")(~j)p(,O)) (~) ,,. p(,(,,)(~)/p(~)t +,, 

where It <x) + vt~)+ ... v <t) = It. Thus 

(3.11) I D"(Q/P) I <= cl¢l -°j.l-'. 

Since c > (1 - a)l, we have c + a I Itl >= I Itl = 1. By a generalization of Mikhlin's 
theorem, this shows that Q/P is a multiplier in LP(cf. [16, 17, 18]). 

It remains to prove (3.10). For each It there are vectors 0 (1), ...,0 (') and co- 
efficients ~1, "", ~, such that I 0(J)l = 1 and 

(3.12) tlUlQ(~)({) = T~rj Q(~ + tO (j)) 

holds for all real ¢ and t > 1 (cf. [15]). Set t =  141o/2. Then for 141 -> 1 we have 

14 +to(r)I>=1~1~1¢1 _141/2. 

Now by (2.1), (2.13) and (3.12) 

14 I~t~l Q¢")(~)I ~ c ~1 P(¢,+ t°<J))l I¢ .4- to (J)l -c 

___ c ~: l l,<')(¢)l l ¢1 °~'~-° 
v 

____ cIP(¢)11¢1 -° 

for I ¢ I large. This gives (3.10) and the proof of Theorem 2.11 is complete. 
We can now give the 

Proof of Theorem 2.4. By Theorem 2.1 it suffices to show that if P(¢) # i 
for each 4, then 1 E P(Po). We may take I = 0. By (2.2) I P(¢) I - "  oo as 141 ~ oo. 
Thus if P(~) # 0 for real 4, there is a constant co > 0 such that (3.4) holds. By the 
reasoning in the proof of Theorem 2.1 we see that R(Po) is dense in LgMoreover, if 
we take Q(~)= 1, the hypotheses of Theorem2.11 are satisfied with c = b. Hence 

by (3.9) 

(3.12) Ilvll = clll~(o)vll, ,,~s, 

which shows that R(Po) is closed inlLPand that N(Po) = {0}. Hence 0sP(Po)  , 
and the proof  is complete. 

Note that Theorems 2.7 and 2.8 are special cases of Theorems 2.12 and 2.13,o 
respectively. 
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Proof  of Theorem 2.10. Let ~bea  real vector in E" and let $ be a function 

in S such that 1[ $ I1 = 1. Zor~ > 0 set 

~b,(x) = 8"/'etCXO(~x). 

Then 

P(D ),L(x) = 8 "l" e '¢x E ~l*' P~"~(O¢.(~x)/~!, 

where ~k~, = D"ff. Thus 

(3.13) 

Similarly, 

(3.14) 

I[ P(D)~II-~ IP(¢) I a s s  ~ 0 .  

II Q(D)4~. I1-~ I Q(¢) I as  e ~ 0 .  

Now if D(Po) =- D(Qo), we see from the fact that they are both dosed operators 
that 

II ao~ II -<-- c( tl Po~ II + [I ~ II), o ~ D(Po). 

Hence 

(3.15) II a(o)~.)II ~ c(ll P(O)~ II + II ~.ll). 
Since II ~ [I = 1, we obtain (2.12) by letting 8 --* 0 in (3.15) and employing (3.13) 
and (3.14). 

Conversely, assume that (2.12) holds and that p = 2. Then 

IQ(¢)F~] ~ <- c([P(¢)Fvl ~ + [t~[~), v ~ s .  

Integrating with respect to 4, we have by Parseval's identity 

(3.16) IlO(D)v[I <= c([[P(D)vll + II vii), v ~ s .  

Now let v be any function in D(Po). Then there is a sequence {Vk} of functions 
in S such that v, --. v and P(D)v,  ~ Pov in L 2. By (3.16), Q(D)vk converges in L 2 
to some function w. Thus v ~ D(Qo) and Qov = w. 

In proving Theorems 2.12 and 2.13 we shall make use of the following results. 

THEOREM 3.1. Let  ko be an integer sat is fy ing 0 < k o < n, and let w be a 
func t ion  in C"+I(E n) sat is fy ing 

IlD'wlll <= K2, I . I - - - "  + 1. 

Suppose 1 < p < oo and let a be a number  sat is fy ing 

(3.17) - n < ~ < p(n - ko) - n. 
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Let q(x) be a function locally in L p, and let T be the operator defined by 

(3.18) Tf  = q[F-l(w) * f ] .  

Then 

(3.19) II zfll <= C(K, + K2) . . , , / ,  [M~.ptq)j Ilfll, 
where the constant C depends only on n, ko, ot and p. 

Proof. Set 

Then by integration by parts 

(;(x)fF-~(w). 

T h u s  

(3.20) 

and 

(3.21) I o(x)l-<_ K21 x I - ' - ' ,  

Assume first that 1 < p < oo. Then for v s S 

I~G(x)l = IF-'(D~w)I ~ II o'wll~. 

IG(x ) I~K~I~ I  -'o, ~ E  ~ 

x ~E n. 

Thus 

(3.22) 

(Tf, v)= f f q(x)G(x-y)f(y)v(x)dxdy. 

f 6  L, n 

lx-yl<t Ix-.) ' l> 1 

Ix-yl<l 

( f f I 
Ix-yl < 1 

Ix-Yl>l 

• ( f  f 
Ix-yl>l 

for any fl satisfying 0 < fl < 1. Now in general 

(3.23) Mr,p(q) < Mo,,(q), 
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and 

(3.24) M0,p(q) < CMr,p(q), 

where C depends only on y and n. Thus we may assume without loss of generality 
that 

- k o p  < ~ < O. 

We take 
13 = [,,~tl/tcop. 

Then 0 < fl < 1 and by (3.17) 

1 - (n/p'ko) < fl < nip k o. 

Thus (1 - fl)p'k o < n, so that 

(3.25) f ]G(z)] t1-#)P~/x < K1 
¢ 

[zl<l 

Moreover by our choice of fl 

(3.26) f 
Ix-yl<l  

By (3.21) 

(3.27) 

I claim further that 

(3.28) 

f 
Izl<'  

[q(x) 1"[ G(x - 3,)['Pdx ~ K.~ M~,a,(q ) . 

f IG(z)ldzZK2 f Izl -"-x dz. 
Izl>l Izl>l 

which implies (3.19). The case p = 1 is easily disposed of. Inequality (3.17) becomes 
- n < a < - ko. Thus by (3.20) and (3.28) 

lip I(Zf, o)l <= c(g, + K2)[M~m(q)] ilfll, lloll,,, 

where C depends only on n. Assuming this for the moment,  we have by (3.22), 
(3.24)-(3.28), 

f I q(x) l Pl G(x - Y) I dx  < C g 2 Mo,p(q) , 

[x-y[>l 
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II z f ll l f f Iq(x) l[ G(x-  y) llf(y)ldxdy 
Ix-yl<l  

+ f f  lg(z)llG(x-y)llf(Y)[ dxdy 
Ix-rl>l 

g 1M~,p(q)[Ifll + C 12 Mo,v(q)I1/11, 

which implies (3.19) in this case as well. 
It therefore remains only to prove (3.18). Now 

f [q(x)[ '[G(x-y)[dx = ~ f 
k=l  [x--y[>l k<[x-yl<k+ l 

-<_K2 ~:k-"-' f k=l  
k<lx-Yl<k+! 

But there is a constant C depending only on n such that 

(3.29) f [q(x) IPdx < Ck"-1Mo,p(q). 
k<lx-yl<k+l 

Thus 

(3.30) 

Iq(x) l~dx. 

f oo [q(~)[. I G(~ - y)ldx <__ CK~Mo,.(q) z k  -2 , 
k=l  

Ix-y]>l  

which is merely (3.28). This completes the proof. 

LEMMA 3.2. Let q~ be a function in C~ and let ~ be a bounded subset of E". 
Then the operator 

A f  = F-1(4~) * f 

is a compact operator from L p to C(f~). 

Proof. Since Af is a smoth function, we have 

DjAf= DjF -1 (~) * f =  - F-l(~j~b) *f. 

Since F-l(~b) and F - l ( ~ )  are in /S for any r, we have by Young's inequality 

(3.31) ]]Af II ~ + ~][DjAfII~ < CIIf[Ip" 

Now let {fk} be a sequence of functions in L p satisfying 

HI~U.=<c. 
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By (3.31) {Afk} is a uniformly bounded, equi-continnous sequence of functions 
on ~. Thus it has a convergent subsequence. 

Proof of Theorem 2.12 We may assume that 0 ~ P(Po). Since the hypotheses 
of Theorem 2.11 are fulfilled, inequality (3.9) holds. Moreover, I claim that 

(3.32) I[ q Q(D)vI[ < C I[ P(D)v li, v ~ S, 

holds as well. From this and (3.9) it follows that D(Po)~_ D(q Qo). 
To prove (3.32), let v be any function in S and set f = P(D)v. Then 

(3.33) qQ(D)v = q[F- t(Q/p) , f ]. 

Now by (3.11) D~'(Q/P) is in D whenever a I#1 + c > n. By hypothesis this holds for 
any I l>--ko. Thus the hypotheses of Theorem 3.1 are satisfied for Tf=q Q(D)v. 
The result follows from inequality (3.19). 

Proof of Theorem 2.13. For R > 0 set 

q.(x) = q(x), Ix] __< R 

=0, I l>R. 
Let ~ be a function in C~ ° satisfying 0 < ~b < 1, ¢(x) = 1 for [ x[ < 1, ¢ (x) = 0 
for [ x [ > 2. Set ¢,(~) = d/(~/r), r > 0. Now by (3.33) 

Tf  = qQ(D)v = qg[V-a(~b,Q/P) * / ]  + qR{F -1 [(1 -- ~,)Q/P] * f 

+ (q - qR)[F-'(Q/P) * f ]  = T l f +  T2fo+ T3f. 

Now for each R and r, T 1 is a compact operator on L. p For by Lemma 3.2 A f 
= F-l(tpr Q/p) .  f is a compact operator from L p to C(~), where fl is the sphere 
Ix [ < R. Since q is locally in L p, qR is a bounded operator from C(-~) to L p. Hence 
7"1 is compact on L p. 

Next I claim that T2 and T 3 are bounded operators on L p and their bounds can 
be made as small as desired by taking R and r sufficiently large. For by Theorem 3.1 

[[ T 21[ <= C K3 [M~,p(qR)] '/p, 

where K 3 is a bound for derivatives of (1 - ~,)Q/P of order n + 1. But by (3.11) 
these derivatives are as small as we like by taking r sufficiently large. 

Since 

M,,,(qR) <= M,,,  

the same is true of H T2 H" Next I claim that there is a ~ satisfying 

a < ? < p ( n -  ko) - n 

and 
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(3.34) 

This means that 

f lq(x)lPlx-yl~dx~O a s  lyl-~oo. 
Ix-yl<l  

(3.35) Mr,p(q - qR) ~ 0 as R ~ ~ .  

Now by Theorem 3.1 

II T3 tl < C(K, -t- K2) [M~, p(q - qe)] l/p, 

which shows that I! T3 II can be made as small as desired by taking R sufficiently 
large. Thus T is the limit in norm of compact operators on L p. Hence T is compact. 
This implies that q Qo is Po-compact. 

Thus to complete the proof we merely must prove (3.34). It is obvious for 
p(n - ko) > n. Otherwise we have by H/51der's inequality 

(3.36) 

Ix-yl<l  ]x-yl<l 

, \ 1 I s '  

Ix-yl<t 

Take s so large that e + ([ e I/s) < p(n - ko) - n. Then set ~, -- e + ([ ~ I/s). This 
gives e = 7s'. Hence 

(3.37) f f 
Ix-Y]< I Ix-y]<l 

Thus (3.34) follows from (2.7). This completes the proof. 

Proof of Theorem 2.14. By Theorem 3. I. 

(3.38) Zlla~(x)e,(D)~il _-< c(llP(o)~l( ÷ (l ~[[), ~ s ,  
from which we conclude D(Po) ~- D(aj(x)Qjo), and consequently D(Po) c_ D(Lo). 
Moreover, on D(Po) 

Lo - Po = Z[aj(x) - adQjo,  

and each operator [ a j ( x ) -  aj]Qjo is Po compact by Theorem 2.13. Thus the 
same is true for Lo - Po and the proof is complete. 

REFERENCES 

1. Erik Balslev, The essential spectrum of elliptic differential operators in LP(Rn), Trans. 
Amer. Math. Sot., 116 0965) I93-217. 

2. F. E. Browder, On the spectral theory of elliptic differential operators I, Math. Ann., 
142 (1961) 22-130. 



Vol. 6, 1968 NON-ELLIPTIC OPERATORS 397 

3. M. S. Birman, On the spectrum of  singular boundary value problems, Mat. Sb. 97 (1961) 
125-174. 

4. I. M. Glazman, On the application of  the method o f  splitting to multidimensional singular 
boundary value problems, ibid. 35 (1959) 231-211. 

5. Tosio Kato, Fundamental properties of  Hamolitonian operators of  Schrodinger type 
Trans. Amer. Math. Sot., 70 (1951) 196-211. 

6. P. A. Rejt6, On the essential spectrum of the hydrogen energy and related operators, Pacific 
J. Math., 19 (1966) 109-140. 

7. R. M. Martirosjan, On the spectra of  some non-self-adjoint operators, Izv. Akad. Nauk. 
SSSR Ser. Mat., 27 (1963) 677-700. 

8. F. Stummel, Singulare elliptische Differential operatoren in Hilbertscher Raumen, Math. 
Ann., 132 (1956) 150--176. 

9. Frantisek Wolf, On the perturbation o f  an elliptic operator which leaves the essential 
spectrum invariant, Bull. Acad. Belg., 46 (1960) 441-447. 

10. Martin Schechter, On the invariance of  the essential spectrum o f  an arbitrary operator II, 
Ricercher Mat., 16 (1967) 3-26. 

11. I. M. Glazman, Direct methods of  the qualitative spectral analysis o f  singular differential 
operators, Fizmatgiz., Moscow, 1963. 

12. R. A. Goldstein, Equality of  minimal and maximal extensions o f  partial differential 
operators in LU(Rn), Proc. Amer. Math. Soc., 17 (1966) 031-1033. 

13. K. Gustafson and J. Weidman, On the essential spectrum, (to appear). 
14. Martin Schechter, On perturbations of  essential spectra, (to appear). 
15. L. Hormander, On the theory of general partial differential operators, Acta Math., 

94 (1955) 161-248. 
16. S. G. Mikhlin, On the multipliers of  Fourier integrals, Dokl. Akad. Nauk SSSR, 109, 

(1956) 5701-703. 
17. L. Horrnander, Estimates for translation invariant operators in L p spaces, Acta Math., 

104 (1960) 93-140. 
18. Eliahu Shamir, ,4 remark on the Mikhlin-Hormander multipliers theorem, J. Math. Anal. 

Appl., 16 (1966) 104-107. 
19. L. P. Niznik On the spectrum ofgeneraldifferentialoperators, Dokl. Akad. Nauk SSSR, 

124 (1959) 517-519. 

BELHER GRADUATE SCHOOL OF SCIENCE 
YESHIVA UNIVERSITY 


