THE SPECTRA OF NON-ELLIPTIC OPERATORS

BY
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ABSTRACT

We discuss the spectrum of the minimal operator corresponding to a constant
coefficient partial differential operator on L? (E"). We then study effects on the
spectrum by various perturbations.

1. Introduction. Let P(D) be a constant coefficient partial differential operator
in E™ Acting on the set Cg’ of smooth functions with compact supports, P(D) is
closable in I?(E"), 1 £ p £ 0. In this paper we are concerned with certain spectral
properties of its closure P, in IP(E").

For p =2, o(P,) consists of the closure of the set of values taken on by P(¢)
for & real. We were able to obtain the same result for 1 < p < oo under the assump-
tions

(L1 PO [PE) = 0 &[Ny as [£]— o0
(12) 1/P) = 0(¢]™ as |¢]- oo,

¢ real, for b > (1 — a)l, 21 > n, where P*X(¢) denotes a derivative of P(¢) of order
[ul.

We then obtain sufficient conditions on an operator Q(D) to imply that
D(Py) = D(Q,) and on a function q(x) that D(P,) = D(qQ,) and that qQ, be
Py-compact. This enables us to study the essential spectrum of an operator of
the form

L(x,D) = Z a;(x)Q,D).
1

Most previous work on these questions concerned eiliptic operators. A partial
list of contributors includes Balslev [1], Browder [2], Birman [3], Glazman
[4], Kato [5], Rejto [6], Stummel [8], Wolf [9], and Schechter [10]. See also
the book [11] by Glazman and the authors quoted there.

Results for non-elliptic operators were obtained by Niznik [19] and Marti-
rosjan [7].

2. The Main Results. Let P(¢) be a polynomial of degree m in the variables
&=(&,,¢&). If we replace £ by D =(D,,---,D,), where
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we obtain a constant coefficient partial differential operator P(D). Let p satisfy
1 =< p £ . The minimal operator P, in I7 = If(E") corresponding to P(D) is
defined as follows. A function u € I? is in D(P,) and Pyu = f if there is a sequence
{u,} of functions in Cy°(the set of infinitely differentiable functions with compact
supports) such that u, — u and P(D)u, — f in L%, Concerning the spectrum o(Py)
of P, we have

THEOREM 2.1. In order that i be in p(P,) it is necessary, and for p = 2 also
sufficient, that P(&) — A be bounded away from zero for & real.

REMARK 2.2. In general the non-vanishing of P(¢)—A for real & does not
imply that it is bounded away from zero. For instance, if

PE) = (&= 1P + &7+ - + &,

then P(&) # 0 for all real vectors &. But if we take &, = 1/¢; and &; = 0 for j > 2,
then P(&)— 0 as | &, | - co.
REMARK 2.3. By Theorem 2.1 we have for p = 2 that o(P,) consists of those 4
such that there is a sequence {£®} of real vectors satisfying P(é®) » 1 as k — co.
In order to describe our results for p # 2, we let u = (uq, -+, 4,) be a multi-
index of non-negative integers. Set |u|= py + - + p, and

PW(E) = WIP(E) fagh!-+- ey

We assume that

@1 P& [P =O(&| ™) as |¢[ >, each p,
and
2.2) 1/PE) =0([¢]™) as |¢ - o

for real vectors &, where a =0 and b > 0. We have

THEOREM 2.4. Let [ be an integer > n[2 and assume that P(§) satisfies (2.1)
and (2.2) for b= (1 —a)l. If 1 < p < 0, then L€ p(P,) if and only if P(§) # A
Jor all real vectors &.

REMARK 2.5. Many types of operators satisfy (2.1) and (2.2). If a > 0, P(§) is
hypo-elliptic. If a =1, P(¢) is elliptic. We always have a £ 1 and b = ma.

REMARK 2.6. One can define a maximal operator P, corresponding to P(D) in
L?. We say that a function ucI? is in D(P,) and P, u = f if

2.3) uw,PD)p) =(f,¢),  $€Cy,

where P(€) is the polynomial the coefficients of which are the complex conjugates
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of those of P(¢). It has been proved by Goldstein [12] that P,=P, for 1 £ p < co.
Hence all of the statements made so far apply to P, as well.

Next let g(x) be a function defined on E", and let V be the set of those functions
ueI? such that qu e If. We can consider multiplication by g as an operator on
I’ with domain V. This operator is closed; denote it also by q. We shall give
sufficient conditions for D(P,) < D(g) and for g to be P,-compact. For arbitrary
operators A, B we say that B is A-compact if D(4) < D(B) and

249 x| + ] Ax] =€, xeD@),
implies that {Bx,} has a convergent subsequence.

THEOREM 2.7. Suppose P(£) satisfies (2.1) and (2.2) for real &, with
b> (1 — a)n + a. Let k, denote the smallest integer = 0 such that a ky >n — b.
Assume that 1 £ p <o and that q(x) is a function locally in LF such that
M, (q) < oo for some « satisfying

(2.5) —n<a<pn—ky)—n,

where

2.6) M, (q) = sup f lg(x)| ?|x — y| %dx.
y Ix-y|<1

Assume also that p(Py) is not empty. Then D(Py) = D(q).

THEOREM 2.8. If the hypotheses of Theorem 2.7 are satisfied and

QN f la(x)| Pdx—0 as |y|- oo,

lx=yl<1
then q is Py-compact.
ReMARK 2.9. For an arbitrary operator A on a Banach space, there are at

least seven definitions for the essential spectrum 6 (4) of A (cf. [13, 14]). Most of
them coincide for a self-adjoint operator in Hilbert space. For these one has

(2.8) 6.(A + B) = 0(4)

whenever B is A-compact. Thus under the hypotheses of Theorem 2.8 we have
29 0Py + ) = 0(Po).

Moreover, under every definition of essential spectrum one has

2.10) 6 (Po)=0(Po).



Vol. 6, 1968 NON-ELLIPTIC OPERATORS 387

Hence
(2.11) o(Py + q) 2 0(Po + q) = o(Py).

Let P(¢) and Q(&) be polynomials and let P, and Q, be the minimal operators
corresponding to P(D) and Q(D), respectively. We give conditions under which
one has D(Py) < D(Qy).

ToeEOREM 2.10. A necessary, and for p =2 also sufficient, condition that
D(P,) < D(Q,) is that

(2.12) 0@ | C(PE)|+1), & real.
When p # 2 we have a weaker result.
THEOREM 2.11. Suppose that P(€) satisfies (2.1) and that
(2.13) Q)IPE) = 0(|¢|™) as |£]» o, ¢ real
Assume that ¢ = (1 — a)l, where 1 is an integer > nf2. If 1 < p < o and p(P,)
is not empty, then D(Py) < D(Q,).

The next two theorems are concerned with the operator g Q,.

THEOREM 2.12. Suppose 1 < p< oo and that (2.1) and (2.13) hold with
¢>(1 — a)n + a. Assume that q is locally in I and that M, (q) < o for some a
satisfying

2.14) —n<a<pn—ky—n,

where kg is the smallest integer =0 satisfying ky, a > n— c. If p(P,) is not
empty, then D(P,) < D(q Qo).

THEOREM 2.13. If(2.7) holds in addition to the hypotheses of Theorem 2.12,
then the operator q Qg is Py-compact.

Every variable coefficient partial differential operator is of the form

@15) LxD) = X ax)Q,D),
1

j=
where the Q (D) are constant coeflicient operators and the a/x) are functions of

coordinates. We can define the minimal operator L, corresponding to L(x,D)
in the same way as was done for constant coefficient operators.

THEOREM 2.14. Assume that there are constants a; such that the constant
coefficient operator P(D) = Xa; Q;(D) satisfies (2.1) and

2.16) 0,(OIP(E) = O(|E]™) as | &] - oo

for each j, where ¢; > (1 — a)n + a. Suppose 1 < p < o0 and
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(217) Maj,p[aj(x)] < o0, 1 é] é r,
where
(2.18) —-n<a;<pn—k)—n

and k; is the smallest integer 2 0 satisfying ak; <n — c;. If p(P,) is not empty
and

(2.19) |ajx) — a;|%dx—0 as |y| >0,
Ix—yl<1
1=sj=sr,

then Ly — P, is Py~compact. T hus
0(Lo) 2 6(Lo) = 6(Pg)= o(P,)
for those definitions of essential spectrum discussed in Remark 2.9.
3. Proofs.
Proof of Theorem 2.1. Without loss of generality, we may assume that
A = 0. If P(¢) is not bounded away from zero, there is a sequence {¢™} of real

vectors such that P(¢®) — 0 as k —» co. Let {g,} be a sequence of positive numbers
such that

G £ MPOED) 50 as ko oo
holds for each , and let y be a function in Cg’ such that ||y || =1 (the norm is
that of 17). Set
(32) $ux) = &7 MY (o), Kk =1,2,,
where 1/c0 is to be interpreted as 0. Thus
(3.3) 6l =1, k=1,2,-.
Now by Leibnitz’s formula (cf. [15])

P(D)§ = &” 7% T eMPUED )y, (o)l

u

where Y,(x) = D"Y(x) = (— 1)!*la"y(x)/ox,"* --- dx,*» and p!= p,! - p,). Since
[ w0 | = vl

we have by (3.1)
P(D)p,—0 as k=00

in I?. This shows that 0 € o(Py).
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Next suppose that there is a constant ¢y> 0 such that
3.4 |P®)|Zco, € real.
Let S be the set of infinitely differentiable functions » on E” such that

| x| Do)

is bounded for each j and p. If feS, then its Fourier transform Ff is also in S.
By (3.4) the same is true of Ff/P. Thus there is a u € S satisfying

(3.5) Fu=Ff|P.
(3.6) P(Dyu = f
Thus

In particular

) (u, P(D)$) = (f, 9), $eCyq,

showing that u € D(P,). By Goldstein’s result [12], we have u € D(P,). Moreover,
by (3.4) and (3.5)

lFu, é ]Ffl/cm
which implies

| Fu| < | Ff/eo.
If p =2, Parseval’s identity then gives
9 Ju] £ 1/eo

Since S is dense in I and P, is a closed operator, this shows that for each feI?
there is a unique u e D(P,) such that Pou =f and (3.8) holds. Thus 0 p(P,)
and the proof of Theorem 2.1 is complete.

Before proving Theorem 1.4, let me give the

Proof of Theorem 2.11. Assume 0¢€ p(P,). I am going to prove
3.9) | QD)o | < C|PD)s], veS.

Since Cq < S, it follows from (3.9) that D(P,) = D(Q,). To prove (3.9) note that

FIQW)] = 52 FLP©)]

Inequality (3.9) will follow if we can show that Q(&)/P(€) is a multiplier in L? for
for 1 < p < . Now I claim that

(3.10) QUAOIPE) =O([&|M™°) as | ¢| - o
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Assume this for the moment. An easy induction shows that D*(Q/P) is a sum
of terms of the form

constant Q¥ (&)PY ™ (&) ... PYX )P,
where p + v+ .- v® = p. Thus
(3.11) | D*Q/P) | < Clg~ M.

Since ¢ = (1 — a)l, we have ¢+ a|u| 2 |u| £ 1. By a generalization of Mikhlin’s
theorem, this shows that Q/P is a multiplier in IP(cf. [16, 17, 18]).

It remains to prove (3.10). For each u there are vectors §),---,0 ™ and co-
efficients y,, -, 7, such that |6)| = 1 and

(3.12) 110®(E) = Xy, Q(¢ + 1)
holds for all real ¢ and ¢ = 1 (cf. [15]). Set t = |§|“/2, Then for l{‘ > 1 we have

&+ 160 | 2 |¢] = 1] z]¢)2
Now by (2.1), (2.13) and (3.12)

|f |alnI|Q(u)(€)| <C zlp(fH" to(i))| |€ +10 (J)l -c
< C T|PO||e|Me

= C|PO|[¢]™

for | ¢| large. This gives (3.10) and the proof of Theorem 2.11 is complete.
We can now give the

Proof of Theorem 2.4. By Theorem 2.1 it suffices to show that if P(£) # A
for each ¢, then A € p(P,). We may take 2 =0.By (2.2) |P(§) [» 0 as [¢]| - oo.
Thus if P(£) # 0 for real &, there is a constant ¢, > 0 such that (3.4) holds. By the
reasoning in the proof of Theorem 2.1 we see that R(P,) is dense in L”Moreover, if
we take Q(€) = 1, the hypotheses of Theorem 2.11 are satisfied with ¢ = b. Hence
by (3.9)

(3.12) o] £C|PD)y|, veS,

which shows that R(P,) is closed inl”and that N(P,) = {0}. Hence 0¢€ p(P,),
and the proof is complete.
Note that Theorems 2.7 and 2.8 are special cases of Theorems 2.12 and 2.13,,

respectively.
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Proof of Theorem 2.10. Let £bea real vector in E" and let  be a function
in S such that ||y ]l = 1. For ¢ > 0 set

bo(x) = "7 (ex).
Then

P(D)$(x) = e"P** X e PUYEY, (ex)/nl,

where ¥, = D*{. Thus

(3.13) | P(DY. | — | P&)| as e—0.
Similarly,
(3.14) |2D)¢. || —|0©)| as e 0.

Now if D(P,) = D(Q,), we see from the fact that they are both closed operators
that

1Qov | < C(|| Pov| + [o]),  veD(Py).
Hence
(3.15) leD)¢a | £ C(| PD)P. | + [ ¢.])-

Since | ¢, || =1, we obtain (2.12) by letting &> 0 in (3.15) and employing (3.13)
and (3.14).
Conversely, assume that (2.12) holds and that p = 2. Then

|Q&Fv|* £ C(|P&)Fv|* + |Fv|), wveS.
Integrating with respect to £, we have by Parseval’s identity
(3.16) oy | = (|| PDY] + |o|), ves.

Now let v be any function in D(P,). Then there is a sequence {v;} of functions
in S such that v, » v and P(D)v, - Pov in I*. By (3.16), Q(D)v, converges in I?
to some function w. Thus v € D(Q,) and Qqv = w.

In proving Theorems 2.12 and 2.13 we shall make use of the following results.

THEOREM 3.1. Let ko be an integer satisfying 0< ky < n, and letw be a
function in C**1(E") satisfying
ID'wli<Ky,  |ul=ko
oWl S Ko [ul=n+t.
Suppose 1 £ p < oo and let « be a number satisfying

G.17 —n<a<pln—ky)—n.
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Let g(x) be a function locally in I’ and let T be the operator defined by

(3.18) Tf = g[F'(w) * 1.
Then
(.19) | Tf] £ €K, + KD IM, @17 |f],  feL?

where the constant C depends only on n, ko, « and p.
Proof. Set
G(x) = F~1(w).
Then by integration by parts
|%*G(x)| = |F~*(D*w)| £ | D"w ;.

Thus

(3.20) |Gx)| < K, x| ™, xeE"
and

(3.21) |6x)| 2 K, |x|™%  xeE™

Assume first that 1 < p < 0. Then for ve S

(Tf,0) = f f 4G — )f () TR dxdy.

Thus
(3.22) [(Tfv)] £ J‘ f +
l=yl<t  |x=y[>1
é( f |2 | GGx = ) P2 [f0)]? dxdy)m
x=y|<1
([ 16 =npe v(x)lp'dxdy)llp’
lx-yl<1
+(ff Iq(x)lplG(x—y)”f(y)lpdxdy)llp
Ix=yl>1
. (f f |G("‘Y)llv(x)l"'dxdy)”"'
Ix—y]>1

for any B satisfying 0 < f < 1. Now in general

(3.23) M, (=M, (q), 71296
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and

(329 M, () £ CM, (9),

where C depends only on y and n. Thus we may assume without loss of generality
that

—kopSa=<0.
We take
B= |!d||/kop-
Then 0 £ <1 and by (3.17)
1 —(n/p'ko) < B < nfp k.

Thus (1 — f)p’k, < n, so that

(3.25) f ]G(z)]““’)”dngl f ,ZI—(I—ﬂ)p’ko dz.

lz]<1 |z]<1

Moreover by our choice of

(3.26) f 1409 [?| GCx — »)|Pdx < K, M. (q).
|x—y[<1

By (3.21)

(3.27) |6(z) | dz < K, |z|" e
|z][1 [z[[l

1 claim further that

(3.28) f 14(9)] 7] G(x — )| dx £ CK; Mo (@),

|x=y|>1

where C depends only on n. Assuming this for the moment, we have by (3.22),
(3.24)-(3.28),

|(Tf0)| £ CK, + K)[M, (@] A1 01

which implies (3.19). The case p = 1 is easily disposed of. Inequality (3.17) becomes
—n <a< — ky Thus by (3.20) and (3.28)
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1T/, < f f 1409 6Cx = )| 7G| dxedy

lx~y[<1

+ f f 16()|| G(x = »)| |/ ()| dxdy

|x=y{>1

< K, M, (@) |f]| + CK: Mo (@) | f]

which implies (3.19) in this case as well.
It therefore remains only to prove (3.18). Now

b

|4l GG = p)[dx = =

Jx—p|>1 k<|x—yl<k+1
<K, Tk f | a(x) |dx.
k=1

k<|x—y|<k+1

But there is a constant C depending only on n such that

(3.29) f |q(x)|?dx < CK"™* M, (q).
k<{x~pi<k+1
Thus
(3.30) f [ax)[?| G(x — y)|dx £ CK, Mo,p(q)k_Zlk‘z,

Ix=y|>1

which is merely (3.28). This completes the proof.

LEMMA 3.2. Let ¢ be a function in CJ and let Q be a bounded subset of E".
Then the operator
Af =F7 () *f
is a compact operator from I?to C(Q).
Proof. Since Af is a smoth function, we have
- -1
D;Af=D;F ' (¢) *f=—F ' ({¢) /.
Since F ~1(¢) and F~1(¢ 9) are in L for any r, we have by Young’s inequality
3.31) | 4f | o + ZIDsAS | = C |-
Now let { f;} be a sequence of functions in I”satisfying

lil,=c.
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By (3.31) {4f,} is a uniformly bounded, equi-continuous sequence of functions
on Q. Thus it has a convergent subsequence.

Proof of Theorem 2.12 We may assume that 0 € p(P,). Since the hypotheses
of Theorem 2.11 are fulfilled, inequality (3.9) holds. Moreover, I claim that

(3.32) | g QD)o < C || P(D)

holds as well. From this and (3.9) it follows that D(Py)< D(q Qo).
To prove (3.32), let v be any function in S and set f = P(D)v. Then

(3.33) q0(D)o = q[F~'(Q/P) = f].

Now by (3.11) D*(Q/P) is in L! whenever a | ul + ¢>n. By hypothesis this holds for
any lul;ko. Thus the hypotheses of Theorem 3.1 are satisfied for Tf=q Q(D)v.
The result follows from inequality (3.19).

l, ves,

Proof of Theorem 2.13. For R > 0 set

gr(®) = q(x), |x|=R
=0, |x|>R.
Let i be a function in CY satisfying 0 < ¢ < 1, y(x) =1 for | x| < 1, Y (x)=0
for | x| > 2. Set y,(&) = W(&/r), r > 0. Now by (3.33)
Tf = qQ(D) = a[F ~*W,0/P) * £1+ aa{F*[(1 = ¥,)QIP] » f
+ (g — q[FHQ/P) » fl1=Tif + Tof.+ Tof.

Now for each R and r, T, is a compact operator on L? For by Lemma 32 4 f
= F ™!, Q/P) * f is a compact operator from I? to C(Q), where Q is the sphere
[x| < R. Since q is locally in I?, g is a bounded operator from C(Q) to L?. Hence
T, is compact on I?,

Next I claim that T, and T, are bounded operators on I and their bounds can
be made as small as desired by taking R and r sufficiently large. For by Theorem 3.1

" T2 ” = CK3 [Ma,p(qR)]llpa

where K is a bound for derivatives of (1 — ¥,)Q/P of order n + 1. But by (3.11)
these derivatives are as small as we like by taking r sufficiently large.

Since
Ma,p(qR) é Ma,p

the same is true of || T, ||. Next I claim that there is a y satisfying
a<y<pln—ky) —n

and
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(3.39) J ) |?|x — y|"dx—0 as | y| —» .
[x—pl<1

This means that

(3.35) M, (4 —qg) >0 as R—> .

Now by Theorem 3.1
| 5 || £ €K, + K,)[M, (g — 9],

which shows that || T, || can be made as small as desired by taking R sufficiently
large. Thus T is the limit in norm of compact operators on IF. Hence T is compact.
This implies that g Q, is Py-compact.

Thus to complete the proof we merely must prove (3.34). It is obvious for
p(n — ko) > n. Otherwise we have by Hdlder’s inequality

(3.36) f |a(x)|?|x — y|"dx dx< ( f [ 9(x) l"dx)lls
lx=yl<1 .
( J. |q(x)|p|x —_ y‘yS,dx)lls'
lx=yl<1

Take s so large that o + (|a|/s) < p(n — ko) — n. Then set y = & + (| «|/s). This
gives o = ys’. Hence

(3.37) f ) ]? | x - y|dx < f | ()| 7dx Mo M, (g)]"".
[x—-y|<1 lx—y|<1

Thus (3.34) follows from (2.7). This completes the proof.
Proof of Theorem 2.14. By Theorem 3.1.

(3.38) [ ax)Q,Dy| < C(|PDW]| + [ o), veS,

from which we conclude D(P,) = D(a;(x)Q;o), and consequently D(Py) & D(Ly).
Moreover, on D(P,)

Ly— Py = 2[aj(x) - aj]Qjo,

and each operator [a,(x) — a;]Q;0 is P, compact by Theorem 2.13. Thus the
same is true for L, — P, and the proof is complete.

REFERENCES
1. Erik Balslev, The essential spectrum of elliptic differential operators in L*(R,), Trans.
Amer. Math. Soc., 116 (1965) 193-217.

2. F. E. Browder, On the spectral theory of elliptic differential operators 1, Math. Ann.,
142 (1961} 22-130.



Vol. 6, 1968 NON-ELLIPTIC OPERATORS 397

3. M. S. Birman, On the spectrum of singular boundary value problems, Mat. Sb. 97 (1961)
125-174.

4. 1. M. Glazman, On the application of the method of splitting to multidimensional singular
boundary value problems, ibid. 35 (1959) 231-211.

5. Tosio Kato, Fundamental properties of Hamolitonian operators of Schrodinger type
Trans. Amer. Math. Soc., 70 (1951) 196-211.

6. P, A. Rejtd, On the essential spectrum of the hydrogen energy and related operators, Pacific
J. Math., 19 (1966) 109-140.

7. R. M. Martirosjan, On the spectra of some non-self-adjoint operators, Izv. Akad. Nauk.
SSSR. Ser. Mat., 27 (1963) 677-700.

8. F. Stummel, Singulare elliptische Differential operatoren in Hilbertscher Raumen, Math.
Ann., 132 (1956) 150-176.

9. Frantisek Wolf, Or the perturbation of an elliptic operator which leaves the essential
spectrum invariant, Bull. Acad. Belg., 46 (1960) 441-447,

10. Martin Schechter, On the invariance of the essential spectrum of an arbitrary operator 11,
Ricercher Mat., 16 (1967) 3-26.

11. 1. M. Glazman, Direct methods of the qualitative spectral analysis of singular differential
operators, Fizmatgiz., Moscow, 1963.

12. R. A. Goldstein, Eguality of minimal and maximal extensions of partial differential
operators in LP(R™), Proc. Amer. Math. Soc., 17 (1966) 031-1033.

13. K. Gustafson and J. Weidman, On the essential spectrum, (o appear).
14, Martin Schechter, On perturbations of essential spectra, (to appear).

15. L. Hormander, On the theory of general partial differential operators, Acta Math,,
94 (1955) 161-248.

16. S. G. Mikhlin, On the multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR, 109,
(1956) 5701-703.

17. L. Hormander, Estimates for translation invariant operators in LP spaces, Acta Math.,
104 (1960) 93-140.

18. Eliahu Shamir, A remark on the Mikhlin-Hormander multipliers theorem, J. Math. Anal.
Appl., 16 (1966) 104-107.

19. L. P. Niznik On the spectrum of general differential operators, Dokl. Akad. Nauk SSSR,
124 (1959) 517-519,

BELFER GRADUATE SCHOOL OF SCIENCE
YESHIVA UNIVERSITY



