THE SPECTRA OF NON-ELLIPTIC OPERATORS

BY

M. SCHECHTER

ABSTRACT

We discuss the spectrum of the minimal operator corresponding to a constant coefficient partial differential operator on $\hat{L}^p(E^n)$. We then study effects on the spectrum by various perturbations.

1. Introduction. Let *P(D)* be a constant coefficient partial differential operator in $Eⁿ$. Acting on the set C_0^{∞} of smooth functions with compact supports, $P(D)$ is closable in $L^p(E^n)$, $1 \leq p \leq \infty$. In this paper we are concerned with certain spectral properties of its closure P_0 in $L^p(E^n)$.

For $p = 2$, $\sigma(P_0)$ consists of the closure of the set of values taken on by $P(\xi)$ for ξ real. We were able to obtain the same result for $1 < p < \infty$ under the assumptions

$$
(1.1) \tP(\mu)(\xi)/P(\xi) = O(|\xi|^{-a|\mu|}) \text{ as } |\xi| \to \infty
$$

(1.2)
$$
1/P(\xi) = 0(|\xi|^{-b}) \quad \text{as} \quad |\xi| \to \infty,
$$

 ξ real, for $b > (1 - a)l$, $2l > n$, where $P^{(\mu)}(\xi)$ denotes a derivative of $P(\xi)$ of order $|\mu|.$

We then obtain sufficient conditions on an operator $Q(D)$ to imply that $D(P_0) \subseteq D(Q_0)$ and on a function $q(x)$ that $D(P_0) \subseteq D(qQ_0)$ and that qQ_0 be P_0 -compact. This enables us to study the essential spectrum of an operator of the form

$$
L(x,D) = \sum_{1}^{r} a_j(x) Q_j(D).
$$

Most previous work on these questions concerned elliptic operators. A partial list of contributors includes Balslev [1], Browder [2], Birman [3], Glazman [4], Kato [5], Rejto [6], Stummel [8], Wolf [9], and Schechter [10]. See also the book [11] by Glazman and the authors quoted there.

Results for non-elliptic operators were obtained by Niznik [19] and Martirosjan [7].

2. The Main Results. Let $P(\xi)$ be a polynomial of degree m in the variables $\xi = (\xi_1, \dots, \xi_n)$. If we replace ξ by $D = (D_1, \dots, D_n)$, where

Received November 7, Work done in part under National Science Foundation Grant.

$$
D_j = -i\partial/\partial x_j, \qquad 1 \le j \le n,
$$

we obtain a constant coefficient partial differential operator *P(D). Let p* satisfy $1 \leq p \leq \infty$. The *minimal* operator P_0 in $L^p = L^p(E^n)$ corresponding to $P(D)$ is defined as follows. A function $u \in L^p$ is in $D(P_0)$ and $P_0u = f$ if there is a sequence ${u_k}$ of functions in C_0^{∞} (the set of infinitely differentiable functions with compact supports) such that $u_k \to u$ and $P(D)u_k \to f$ in L^p. Concerning the spectrum $\sigma(P_0)$ of P_0 we have

THEOREM 2.1. *In order that* λ *be in* $\rho(P_0)$ *it is necessary, and for p = 2 also sufficient, that* $P(\xi) - \lambda$ be bounded away from zero for ξ real.

REMARK 2.2. In general the non-vanishing of $P(\xi) - \lambda$ for real ξ does not imply that it is bounded away from zero. For instance, if

$$
P(\xi) = (\xi_1 \xi_2 - 1)^2 + \xi_2^2 + \dots + \xi_n^2,
$$

then $P(\xi) \neq 0$ for all real vectors ξ . But if we take $\xi_2 = 1/\xi_1$ and $\xi_j = 0$ for $j > 2$, then $P(\xi) \rightarrow 0$ as $|\xi_1| \rightarrow \infty$.

REMARK 2.3. By Theorem 2.1 we have for $p = 2$ that $\sigma(P_0)$ consists of those λ such that there is a sequence $\{\xi^{(k)}\}$ of real vectors satisfying $P(\xi^{(k)}) \to \lambda$ as $k \to \infty$.

In order to describe our results for $p \neq 2$, we let $\mu = (\mu_1, \dots, \mu_n)$ be a multiindex of non-negative integers. Set $|\mu| = \mu_1 + \cdots + \mu_n$ and

$$
P^{(\mu)}(\xi) = \partial^{|\mu|} P(\xi) / \partial \xi_1^{\mu_1} \cdots \partial \xi_n^{\mu_n}.
$$

We assume that

(2.1)
$$
P^{(u)}(\xi)/P(\xi) = O(|\xi|^{-a|u|}) \text{ as } |\xi| \to \infty, \text{ each } \mu,
$$

and

(2.2)
$$
1/P(\xi) = O(|\xi|^{-b}) \quad \text{as} \quad |\xi| \to \infty
$$

for real vectors ξ , where $a \ge 0$ and $b > 0$. We have

THEOREM 2.4. Let *l* be an integer $> n/2$ and assume that $P(\xi)$ satisfies (2.1) *and* (2.2) *for* $b \ge (1 - a)l$. If $1 < p < \infty$, then $\lambda \in \rho(P_0)$ if and only if $P(\xi) \ne \lambda$ for all real vectors ξ.

REMARK 2.5. Many types of operators satisfy (2.1) and (2.2). If $a > 0$, $P(\xi)$ is hypo-elliptic. If $a = 1$, $P(\xi)$ is elliptic. We always have $a \leq 1$ and $b \geq ma$.

REMARK 2.6. One can define a *maximal* operator P_p corresponding to $P(D)$ in L^p . We say that a function $u \in L^p$ is in $D(P_p)$ and P_p $u = f$ if

(2.3)
$$
(u, \overline{P}(D)\phi) = (f, \phi), \qquad \phi \in C_0^{\infty},
$$

where $\bar{P}(\xi)$ is the polynomial the coefficients of which are the complex conjugates

of those of $P(\xi)$. It has been proved by Goldstein [12] that $P_p = P_0$ for $1 \leq p < \infty$. Hence all of the statements made so far apply to P_p as well.

Next let $q(x)$ be a function defined on $Eⁿ$, and let V be the set of those functions $u \in L^p$ such that $qu \in L^p$. We can consider multiplication by q as an operator on L^p with domain V. This operator is closed; denote it also by q. We shall give sufficient conditions for $D(P_0) \subseteq D(q)$ and for q to be P_0 -compact. For arbitrary operators A, B we say that B is A-compact if $D(A) \subseteq D(B)$ and

(2.4)
$$
\|x_k\| + \|Ax_k\| \leq C, \qquad x_k \in D(A),
$$

implies that ${Bx_k}$ has a convergent subsequence.

THEOREM 2.7. Suppose $P(\xi)$ satisfies (2.1) and (2.2) for real ξ , with $b > (1 - a)n + a$. Let k_0 denote the smallest integer ≥ 0 such that a $k_0 > n - b$. Assume that $1 \leq p < \infty$ and that $q(x)$ is a function locally in L^p such that $M_{\alpha,p}(q) < \infty$ for some α satisfying

$$
(2.5) \qquad \qquad -n < \alpha < p(n-k_0) - n
$$

where

(2.6)
$$
M_{\alpha,p}(q) = \sup_{y} \int_{|x-y| < 1} |q(x)|^p |x-y|^q dx.
$$

Assume also that $p(P_0)$ *is not empty. Then* $D(P_0) \subseteq D(q)$ *.*

THEOREM 2.8. *If the hypotheses of Theorem* 2.7 *are satisfied and*

$$
(2.7) \qquad \qquad \iint\limits_{|x-y|<1} |q(x)|^p dx \to 0 \quad \text{as} \quad |y| \to \infty,
$$

then q is Po-compact.

REMARK 2.9. For an arbitrary operator A on a Banach space, there are at least seven definitions for the essential spectrum $\sigma_e(A)$ of A (cf. [13, 14]). Most of them coincide for a self-adjoint operator in Hilbert space. For these one has

$$
\sigma_e(A+B)=\sigma_e(A)
$$

whenever *B* is *A*-compact. Thus under the hypotheses of Theorem 2.8 we have

$$
\sigma_e(P_0 + q) = \sigma_e(P_0).
$$

Moreover, under every definition of essential spectrum one has

$$
\sigma_e(P_0) = \sigma(P_0).
$$

Hence

$$
\sigma(P_0 + q) \supseteq \sigma_e(P_0 + q) = \sigma(P_0).
$$

Let $P(\xi)$ and $Q(\xi)$ be polynomials and let P_0 and Q_0 be the minimal operators corresponding to $P(D)$ and $Q(D)$, respectively. We give conditions under which one has $D(P_0) \subseteq D(Q_0)$.

THEOREM 2.10. *A necessary, and for p = 2 also sufficient, condition that* $D(P_0) \subseteq D(Q_0)$ *is that*

$$
\big|Q(\xi)\big| \leq C\big(|P(\xi)|+1\big), \qquad \xi \text{ real.}
$$

When $p \neq 2$ we have a weaker result.

THEOREM 2.11. *Suppose that* $P(\xi)$ *satisfies* (2.1) *and that*

(2.13) $Q(\xi)/P(\xi) = O(|\xi|^{-c})$ as $|\xi| \to \infty$, ξ real.

Assume that $c \ge (1 - a)$ *l, where l is an integer > n/2. If* $1 < p < \infty$ *and* $\rho(P_0)$ *is not empty, then* $D(P_0) \subseteq D(Q_0)$.

The next two theorems are concerned with the operator $q Q_0$.

THEOREM 2.12. Suppose $1 \leq p < \infty$ and that (2.1) and (2.13) hold with $c > (1 - a)n + a$. Assume that q is locally in L^p and that $M_{\alpha,p}(q) < \infty$ for some α *satisfying*

(2.14)
$$
-n < \alpha < p(n - k_0) - n,
$$

where k_0 *is the smallest integer* ≥ 0 *satisfying* k_0 $a > n - c$. If $\rho(P_0)$ *is not empty, then* $D(P_0) \subseteq D(q \, Q_0)$.

THEOREM 2.13. If(2.7) *holds in addition to the hypotheses of Theorem* 2.12, *then the operator q* Q_0 *is P₀-compact.*

Every variable coefficient partial differential operator is of the form

(2.15)
$$
L(x,D) = \sum_{j=1}^{r} a_j(x) Q_j(D),
$$

where the $Q_i(D)$ are constant coefficient operators and the $a_i(x)$ are functions of coordinates. We can define the minimal operator L_0 corresponding to $L(x, D)$ in the same way as was done for constant coefficient operators.

THEOREM 2.14. *Assume that there are constants* a_j *such that the constant coefficient operator* $P(D) = \sum a_j Q_j(D)$ *satisfies* (2.1) *and*

(2.16)
$$
Q_j(\xi)/P(\xi) = O(|\xi|^{-c_j}) \text{ as } |\xi| \to \infty
$$

for each j, where $c_j > (1 - a)n + a$. Suppose $1 \leq p < \infty$ and

$$
(2.17) \t\t\t M_{aj,p}[a_j(x)] < \infty, \t 1 \le j \le r,
$$

where

$$
(2.18) \qquad \qquad -n < \alpha_j < p(n-k_j) - n
$$

and k_j *is the smallest integer* ≥ 0 *satisfying* $ak_j < n - c_j$ *. If* $\rho(P_0)$ *is not empty and*

(2.19)
$$
\int_{|x-y| < 1} |a_j(x) - a_j|^p dx \to 0 \text{ as } |y| \to \infty,
$$

$$
1 \le j \le r,
$$

then $L_0 - P_0$ *is* P_0 -compact. Thus

$$
\sigma(L_0) \supseteq \sigma_e(L_0) = \sigma_e(P_0) = \sigma(P_0)
$$

for those definitions of essential spectrum discussed in Remark 2.9.

3. **Proofs.**

Proof of Theorem 2.1. Without loss of generality, we may assume that $\lambda = 0$. If $P(\xi)$ is not bounded away from zero, there is a sequence $\{\xi^{(k)}\}$ of real vectors such that $P(\xi^{(k)}) \to 0$ as $k \to \infty$. Let $\{ \varepsilon_k \}$ be a sequence of positive numbers such that

(3.1)
$$
\varepsilon_k^{\,|\mu|} P^{(\mu)}(\xi^{(k)}) \to 0 \text{ as } k \to \infty
$$

holds for each μ , and let ψ be a function in C_0^{∞} such that $\|\psi\| = 1$ (the norm is that of L^p). Set

(3.2)
$$
\phi_k(x) = \varepsilon_k^{n/p} e^{i\xi^{(k)}x} \psi(\varepsilon_k x), \quad k = 1, 2, \cdots,
$$

where $1/\infty$ is to be interpreted as 0. Thus

(3.3)
$$
\|\phi_k\| = 1, \quad k = 1, 2, \cdots.
$$

Now by Leibnitz's formula (cf. [15])

$$
P(D)\phi_k = \varepsilon_k^{n/p} e^{i\xi^{(k)}x} \sum_{\mu} \varepsilon_k^{| \mu |} P^{(\mu)}(\xi^{(k)}) \psi_{\mu}(\varepsilon_k x) / \mu!,
$$

where $\psi_{\mu}(x) = D^{\mu}\psi(x) = (-1)^{|\mu|}\partial^{|\mu|}\psi(x)/\partial x_1^{\mu_1} \cdots \partial x_n^{\mu_n}$ and $\mu! = \mu_1! \cdots \mu_n!$. Since $\left\|\varepsilon_k^{n/p} \right. \psi_u(\varepsilon_k x) \right\| = \left\|\psi_u\right\|,$

we have by (3.1)

$$
P(D)\phi_k \to 0 \text{ as } k \to \infty
$$

in L^p . This shows that $0 \in \sigma(P_0)$.

Next suppose that there is a constant $c_0 > 0$ such that

(3.4)
$$
|P(\xi)| \geq c_0, \quad \xi \text{ real.}
$$

Let S be the set of infinitely differentiable functions v on $Eⁿ$ such that

 $\vert x \vert^j \vert D^\mu v(x) \vert$

is bounded for each j and μ . If $f \in S$, then its Fourier transform *Ff* is also in S. By (3.4) the same is true of Ff/P . Thus there is a $u \in S$ satisfying

(3.5) Fu = *Ff/e.*

$$
(3.6) \t\t\t P(D)u = f
$$

Thus

In particular

$$
(3.7) \qquad (u, \bar{P}(D)\phi) = (f, \phi), \qquad \phi \in C_0^{\infty},
$$

showing that $u \in D(P_0)$. By Goldstein's result [12], we have $u \in D(P_0)$. Moreover, by (3.4) and (3.5)

 $|Fu| \leq |Ff|/c_0$

which implies

$$
\|Fu\| \leq \|Ff\|/c_0.
$$

If $p = 2$, Parseval's identity then gives

(3.8) $\|u\| \le \|f\|/c_0.$

Since S is dense in L^p and P_0 is a closed operator, this shows that for each $f \in L^p$ there is a unique $u \in D(P_0)$ such that $P_0u = f$ and (3.8) holds. Thus $0 \in \rho(P_0)$ and the proof of Theorem 2.1 is complete.

Before proving Theorem 1.4, let me give the

Proof of Theorem 2.11. Assume $0 \in \rho(P_0)$. I am going to prove

$$
(3.9) \t\t\t $\|Q(D)v\| \le C \|P(D)v\|,$ \t\t\t $v \in S.$
$$

Since $C_0^{\infty} \subset S$, it follows from (3.9) that $D(P_0) \subseteq D(Q_0)$. To prove (3.9) note that

$$
F[Q(D)v] = \frac{Q(\xi)}{P(\xi)} F[P(D)v].
$$

Inequality (3.9) will follow if we can show that $Q(\xi)/P(\xi)$ is a multiplier in L^p for for $1 < p < \infty$. Now I claim that

$$
(3.10) \tQ^{(n)}(\xi)/P(\xi) = O(|\xi|^{-a|\mu|-c}) \text{ as } |\xi| \to \infty.
$$

Assume this for the moment. An easy induction shows that $D^{\mu}(Q/P)$ is a sum of terms of the form

constant
$$
Q^{(\mu^{(1)})}(\xi)P^{(\nu^{(1)})}(\xi)\cdots P^{(\nu^{(t)})}(\xi)/P(\xi)^{1+t}
$$
,

where $\mu^{(1)} + \nu^{(1)} + \cdots \nu^{(t)} = \mu$. Thus

$$
(3.11) \t\t\t |D^{\mu}(Q/P)| \leq C |\xi|^{-a|\mu| - c}.
$$

Since $c \ge (1 - a)l$, we have $c + a |\mu| \ge |\mu| \le l$. By a generalization of Mikhlin's theorem, this shows that Q/P is a multiplier in L^p (cf. [16, 17, 18]).

It remains to prove (3.10). For each μ there are vectors $\theta^{(1)}, \dots, \theta^{(r)}$ and coefficients $\gamma_1, \dots, \gamma_r$ such that $|\theta^{(j)}| = 1$ and

(3.12)
$$
t^{|\mu|}Q^{(\mu)}(\xi) = \sum \gamma_j Q(\xi + t\theta^{(j)})
$$

holds for all real ξ and $t \ge 1$ (cf. [15]). Set $t = |\xi|^4/2$. Then for $|\xi| \ge 1$ we have

$$
|\xi + t\theta^{(j)}| \geq |\xi| \leq \frac{1}{2} |\xi| \geq |\xi|/2.
$$

Now by (2.1), (2.13) and (3.12)

$$
\left| \xi \right|^{a|u|} \left| Q^{(u)}(\xi) \right| \leq C \sum \left| P(\xi_i + t\theta^{(j)}) \right| \left| \xi + t\theta^{(j)} \right|^{-c}
$$

\n
$$
\leq C \sum_{v} \left| P^{(v)}(\xi) \right| |\xi|^{a|v|-c}
$$

\n
$$
\leq C \left| P(\xi) \right| |\xi|^{-c}
$$

for $|\xi|$ large. This gives (3.10) and the proof of Theorem 2.11 is complete.

We can now give the

Proof of Theorem 2.4. By Theorem 2.1 it suffices to show that if $P(\xi) \neq \lambda$ for each ξ , then $\lambda \in \rho(P_0)$. We may take $\lambda = 0$. By (2.2) $|P(\xi)| \to \infty$ as $|\xi| \to \infty$. Thus if $P(\xi) \neq 0$ for real ξ , there is a constant $c_0 > 0$ such that (3.4) holds. By the reasoning in the proof of Theorem 2.1 we see that $R(P_0)$ is dense in L.^pMoreover, if we take $Q(\xi) = 1$, the hypotheses of Theorem 2.11 are satisfied with $c = b$. Hence by (3.9)

$$
(3.12) \t\t\t ||v|| \leq C ||P(D)v||, \t v \in S,
$$

which shows that $R(P_0)$ is closed in L^p and that $N(P_0) = \{0\}$. Hence $0 \in \rho(P_0)$, and the proof is complete.

Note that Theorems 2.7 and 2.8 are special cases of Theorems 2.12 and 2.13_{g} respectively.

Proof of Theorem 2.10. Let ξ be a real vector in E^n and let ψ be a function in S such that $\|\psi\| = 1$. For $\varepsilon > 0$ set

$$
\phi_{\varepsilon}(x)=\varepsilon^{n/p}e^{i\xi x}\psi(\varepsilon x).
$$

Then

$$
P(D)\phi_{\varepsilon}(x)=\varepsilon^{n/p}e^{i\xi x}\sum_{\mu}\varepsilon^{|\mu|}P^{(\mu)}(\xi)\psi_{\mu}(\varepsilon x)/\mu!,
$$

where $\psi_{\mu} = D^{\mu} \psi$. Thus

(3.13) $\| P(D)\phi_{\varepsilon} \| \rightarrow | P(\xi) |$ as $\varepsilon \rightarrow 0$.

Similarly,

(3.14)
$$
\|Q(D)\phi_{\varepsilon}\| \to |Q(\xi)| \text{ as } \varepsilon \to 0.
$$

Now if $D(P_0) \subseteq D(Q_0)$, we see from the fact that they are both closed operators that

$$
\|Q_0v\| \leq C(\|P_0v\| + \|v\|), \qquad v \in D(P_0).
$$

Hence

$$
(3.15) \t\t\t \|Q(D)\phi_{\varepsilon}\| \leq C(\|P(D)\phi_{\varepsilon}\| + \|\phi_{\varepsilon}\|).
$$

Since $\|\phi_{\varepsilon}\| = 1$, we obtain (2.12) by letting $\varepsilon \to 0$ in (3.15) and employing (3.13) and (3.14).

Conversely, assume that (2.12) holds and that $p = 2$. Then

$$
|Q(\xi)Fv|^2 \leq C(|P(\xi)Fv|^2 + |Fv|^2), \qquad v \in S.
$$

Integrating with respect to ξ , we have by Parseval's identity

$$
(3.16) \t\t\t \|Q(D)v\| \leq C(\|P(D)v\| + \|v\|), \t v \in S.
$$

Now let v be any function in $D(P_0)$. Then there is a sequence $\{v_k\}$ of functions in S such that $v_k \to v$ and $P(D)v_k \to P_0v$ in L^2 . By (3.16), $Q(D)v_k$ converges in L^2 to some function w. Thus $v \in D(Q_0)$ and $Q_0v = w$.

In proving Theorems 2.12 and 2.13 we shall make use of the following results.

THEOREM 3.1. Let k_0 be an integer satisfying $0 \leq k_0 < n$, and let w be a *function in* $C^{n+1}(E^n)$ *satisfying*

$$
\| D^{\mu} w \|_1 \le K_1, \qquad |\mu| = k_0
$$

$$
\| D^{\mu} w \|_1 \le K_2, \qquad |\mu| = n + 1.
$$

Suppose $1 \leq p < \infty$ *and let* α *be a number satisfying*

(3.17)
$$
-n < \alpha < p(n - k_0) - n.
$$

Let $q(x)$ be a function locally in L^p , and let T be the operator defined by

(3.18)
$$
Tf = q[F^{-1}(w) * f].
$$

Then

$$
(3.19) \t\t\t ||Tf|| \leq C(K_1 + K_2) [M_{\alpha,p}(q)]^{1/p} ||f||, \t\t f \in L^p,
$$

where the constant C depends only on n , k_0 , α and p .

Proof. Set

$$
G(x) = F^{-1}(w).
$$

Then by integration by parts

$$
|x^{\mu}G(x)| = |F^{-1}(D^{\mu}w)| \leq ||D^{\mu}w||_1.
$$

Thus

$$
(3.20) \t |G(x)| \le K_1 |x|^{-k_0}, \t x \in E^n
$$

and

(3.21)
$$
|G(x)| \le K_2 |x|^{-n-1}, \quad x \in E^n.
$$

Assume first that $1 < p < \infty$. Then for $v \in S$

$$
(Tf, v) = \int \int q(x)G(x - y)f(y)\overline{v(x)}dxdy.
$$

Thus

$$
(3.22) \qquad |(Tf, v)| \leq \int_{|x-y| < 1} + \int_{|x-y| > 1} + \int_{|x-y| > 1} + \int_{|x-y| > 1} + \int_{|x-y| < 1} |q(x)|^p |G(x-y)|^{\beta p} |f(y)|^p dx dy \Big)^{1/p}
$$
\n
$$
\cdot \left(\int_{|x-y| < 1} |G(x-y)|^{(1-\beta)p'} |v(x)|^{p'} dx dy \right)^{1/p'}
$$
\n
$$
+ \left(\int_{|x-y| > 1} |q(x)|^p |G(x-y)| |f(y)|^p dx dy \right)^{1/p}
$$
\n
$$
\cdot \left(\int_{|x-y| > 1} |G(x-y)| |v(x)|^{p'} dx dy \right)^{1/p'}
$$

for any β satisfying $0 \le \beta \le 1$. Now in general

$$
(3.23) \t\t\t M_{\gamma,p}(q) \leq M_{\delta,p}(q), \quad \gamma \geq \delta
$$

and

$$
(3.24) \t\t\t M_{0,p}(q) \leq CM_{\gamma,p}(q),
$$

where C depends only on γ and n. Thus we may assume without loss of generality that

$$
-k_0 p \leq \alpha \leq 0.
$$

We take

$$
\beta = |x|/k_0 p.
$$

Then $0 \le \beta \le 1$ and by (3.17)

$$
1-(n/p'k_0)<\beta
$$

Thus $(1 - \beta)p'k_0 < n$, so that

(3.25)
$$
\int_{|z| < 1} |G(z)|^{(1-\beta)p'} dx \leq K_1 \int_{|z| < 1} |z|^{-(1-\beta)p'k_0} dz.
$$

Moreover by our choice of β

(3.26)
$$
\int_{|x-y|<1} |q(x)|^p |G(x-y)|^{\beta p} dx \leq K_1 M_{\alpha,p}(q).
$$

By (3.21)

(3.27)
$$
\int_{|z|>1} |G(z)| dz \leq K_2 \int_{|z|>1} |z|^{-n-1} dz.
$$

I claim further that

(3.28)
$$
\int_{|x-y|>1} |q(x)|^p |G(x-y)| dx \leq C K_2 M_{0,p}(q),
$$

where C depends only on n . Assuming this for the moment, we have by (3.22) , (3.24)-(3.28),

$$
|(Tf,v)| \leq C(K_1 + K_2) [M_{\alpha,p}(q)]^{1/p} ||f||_p ||v||_{p'},
$$

which implies (3.19). The case $p = 1$ is easily disposed of. Inequality (3.17) becomes $- n < \alpha < - k_0$. Thus by (3.20) and (3.28)

394 M. SCHECHTER Israel J. Math.,

$$
||Tf||_1 \leq \int_{|x-y| < 1} |q(x)||G(x-y)||f(y)| dx dy
$$

+
$$
\int_{|x-y| > 1} |g(z)||G(x-y)||f(y)| dx dy
$$

$$
\leq K_1 M_{\alpha,p}(q) ||f|| + C K_2 M_{0,p}(q) ||f||,
$$

which implies (3.19) in this case as well.

It therefore remains only to prove (3.18). Now

$$
\int_{|x-y|>1} |q(x)|^p |G(x-y)| dx = \sum_{k=1}^{\infty} \int_{|x|<|x-y|

$$
\leq K_2 \sum_{k=1}^{\infty} k^{-n-1} \int_{|x-y|
$$
$$

But there is a constant C depending only on n such that

(3.29)
$$
\int_{k < |x-y| < k+1} |q(x)|^p dx \leq C k^{n-1} M_{0,p}(q).
$$

Thus

(3.30)
$$
\int_{|x-y|>1} |q(x)|^p |G(x-y)| dx \leq C K_2 M_{0,p}(q) \sum_{k=1}^{\infty} k^{-2},
$$

which is merely (3.28). This completes the proof.

LEMMA 3.2. Let ϕ be a function in C_0^{∞} and let Ω be a bounded subset of E^n . *Then the operator*

$$
Af = F^{-1}(\phi) * f
$$

is a compact operator from L^p *to* $C(\overline{\Omega})$ *.*

Proof. Since *Af* is a smoth function, we have

$$
D_jAf = D_jF^{-1}(\phi) * f = -F^{-1}(\xi_j\phi) * f.
$$

Since $F^{-1}(\phi)$ and $F^{-1}(\xi,\phi)$ are in L for any r, we have by Young's inequality (3.31) $\|Af\|_{\infty} + \Sigma \|D_j Af\|_{\infty} \leq C \|f\|_{p}.$

Now let $\{f_k\}$ be a sequence of functions in L^p satisfying

$$
||f_k||_p \leq C.
$$

By (3.31) $\{Af_k\}$ is a uniformly bounded, equi-continuous sequence of functions on $\overline{\Omega}$. Thus it has a convergent subsequence.

Proof of Theorem 2.12 We may assume that $0 \in \rho(P_0)$. Since the hypotheses of Theorem 2.11 are fulfilled, inequality (3.9) holds. Moreover, I claim that

$$
(3.32) \t\t\t || q Q(D)v|| \leq C || P(D)v ||, \t v \in S,
$$

holds as well. From this and (3.9) it follows that $D(P_0) \subseteq D(q \ Q_0)$.

To prove (3.32), let v be any function in S and set $f = P(D)v$. Then

(3.33)
$$
qQ(D)v = q[F^{-1}(Q/P) * f].
$$

Now by (3.11) $D^{\mu}(Q/P)$ is in L^1 whenever $a|\mu| + c > n$. By hypothesis this holds for any $|\mu| \geq k_0$. Thus the hypotheses of Theorem 3.1 are satisfied for $Tf = q Q(D)v$. The result follows from inequality (3.19).

Proof of Theorem 2.13. For $R > 0$ set

$$
q_R(x) = q(x), \qquad |x| \le R
$$

$$
= 0, \qquad |x| > R.
$$

Let ψ be a function in C_0^{∞} satisfying $0 \le \psi \le 1$, $\psi(x) = 1$ for $|x| < 1$, $\psi(x) = 0$ for $|x| > 2$. Set $\psi_r(\xi) = \psi(\xi/r)$, $r > 0$. Now by (3.33)

$$
Tf = qQ(D)v = q_R[F^{-1}(\psi,Q/P) * f] + q_R\{F^{-1}[(1 - \psi_r)Q/P] * f
$$

+
$$
(q - q_R)[F^{-1}(Q/P) * f] = T_1f + T_2f + T_3f.
$$

Now for each R and r, T_1 is a compact operator on L. For by Lemma 3.2 A f $= F^{-1}(\psi, Q/P) * f$ is a compact operator from L^p to $C(\overline{\Omega})$, where Ω is the sphere $|x| < R$. Since q is locally in L^p , q_R is a bounded operator from $C(\overline{\Omega})$ to L^p . Hence T_1 is compact on L^p .

Next I claim that T_2 and T_3 are bounded operators on L^p and their bounds can be made as small as desired by taking R and r sufficiently large. For by Theorem 3.1

$$
\|T_2\| \leq C K_3 \big[M_{\alpha,p}(q_R)\big]^{1/p},
$$

where K_3 is a bound for derivatives of $(1 - \psi_r)Q/P$ of order $n + 1$. But by (3.11) these derivatives are as small as we like by taking r sufficiently large.

Since

$$
M_{\alpha,p}(q_R) \leq M_{\alpha,p}
$$

the same is true of $||T_2||$. Next I claim that there is a γ satisfying

$$
\alpha < \gamma < p(n-k_0) - n
$$

and

396 M. SCHECHTER Israel J. Math.,

(3.34)
$$
\int_{|x-y| < 1} |q(x)|^p |x-y|^r dx \to 0 \text{ as } |y| \to \infty.
$$

This means that

$$
(3.35) \t\t M_{\gamma,p}(q-q_R) \to 0 \text{ as } R \to \infty.
$$

Now by Theorem 3.1

$$
||T_3|| \leq C(K_1 + K_2) [M_{\gamma,p}(q - q_R)]^{1/p}
$$
,

which shows that $||T_3||$ can be made as small as desired by taking R sufficiently large. Thus T is the limit in norm of compact operators on L^p . Hence T is compact. This implies that $q Q_0$ is P_0 -compact.

Thus to complete the proof we merely must prove (3.34). It is obvious for $p(n - k_0) > n$. Otherwise we have by Hölder's inequality

$$
(3.36) \qquad \int_{|x-y|<1} |q(x)|^p |x-y|^p dx \, dx \le \left(\int_{|x-y|<1} |q(x)|^p dx \right)^{1/s}
$$
\n
$$
\left(\int_{|x-y|<1} |q(x)|^p |x-y|^{ys'} dx \right)^{1/s'}
$$

Take s so large that $\alpha + (\alpha/|s) < p(n - k_0) - n$. Then set $\gamma = \alpha + (\alpha/|s)$. This gives $\alpha = \gamma s'$. Hence

$$
(3.37) \qquad \int\limits_{|x-y|<1} |q(x)|^p |x-y|^p dx \leq \qquad \int\limits_{|x-y|<1} |q(x)|^p dx^{1/s} \left[M_{\alpha,p}(q)\right]^{1/s'}.
$$

Thus (3.34) follows from (2.7). This completes the proof.

Proof of Theorem 2.14. By Theorem 3.1.

$$
(3.38) \t\t \t\t \Sigma || a_j(x) Q_j(D)v || \leq C (|| P(D)v || + || v ||), \t v \in S,
$$

from which we conclude $D(P_0) \subseteq D(a_j(x)Q_{j0})$, and consequently $D(P_0) \subseteq D(L_0)$. Moreover, on *D(Po)*

$$
L_0-P_0=\Sigma[a_j(x)-a_j]Q_{j0},
$$

and each operator $[a_j(x) - a_j]Q_{j0}$ is P_0 compact by Theorem 2.13. Thus the same is true for $L_0 - P_0$ and the proof is complete.

REFERENCES

1. Erik Balslev, *The essential spectrum of elliptic differential operators in* $L^p(R_n)$, Trans. Amer. Math. Soc., 116 (1965) 193-217.

2. F. E. Browder, *On the spectral theory of elliptic differential operators* I, Math. Ann., **142** (1961) 22-130.

3. M. S. Birman, *On the spectrum of singular boundary value problems,* Mat. Sb. 97 (1961) 125-174.

4. I. M. Glazman, *On the application of the method of splitting to multidimensional singular boundary value problems,* ibid. 35 (1959) 231-211.

5. Tosio Kato, *Fundamental properties of Hamolitonian operators of Schrodinger type* Trans. Amer. Math. Soc., 70 (1951) 196-211.

6. P. A. Rejt6, *On the essential spectrum of the hydrogen energy and related operators,* Pacific J. Math., 19 (1966) 109-140.

7. R. M. Martirosjan, *On the spectra of some non-self-adjoint operators,* Izv. Akad. Nauk. SSSR Ser. Mat., 27 (1963) 677-700.

8. F. Stummel, *Singulare elliptische Differential operatoren in Hilbertscher Raumen,* Math. Ann., 132 (1956) 150-176.

9. Frantisek Wolf, *On the perturbation of an elliptic operator which leaves the essential spectrum invariant,* Bull. Acad. Belg., 46 (1960) 441-447.

10. Martin Schechter, *On the invariance of the essential spectrum of an arbitrary operator II,* Ricercher Mat., 16 (1967) 3-26.

11. I. M. Glazman, *Direct methods of the qualitative spectral analysis of singular differential operators,* Fizmatgiz., Moscow, 1963.

12. R. A. Goldstein, *Equality of minimal and maximal extensions of partial differential operators in L^p*(*Rⁿ*), Proc. Amer. Math. Soc., 17 (1966) 031–1033.

13. K. Gustafson and J. Weidman, *On the essential spectrum,* (to appear).

14. Martin Schechter, *On perturbations of essential spectra,* (to appear).

15. L. Hormander, *On the theory of general partial differential operators,* Acta Math., 94 (1955) 161-248.

16. S. G. Mikhlin, *On the multipliers of Fourier integrals,* Dokl. Akad. Nauk SSSR, 109, (1956) 5701-703.

17. L. Hormander, *Estimates for translation invariant operators in L^p spaces*, Acta Math., 104 (1960) 93-140.

18. Eliahu Shamir, *,4 remark on the Mikhlin-Hormander multipliers theorem,* J. Math. Anal. Appl., 16 (1966) 104-107.

19. L. P. Niznik *On the spectrum ofgeneraldifferentialoperators,* Dokl. Akad. Nauk SSSR, 124 (1959) 517-519.

BELFER GRADUATE SCHOOL OF SCIENCE YESHIVA UNIVERSITY